Key Insights
The AI in Retail market is experiencing explosive growth, projected to reach a substantial size driven by the increasing adoption of artificial intelligence across various retail operations. The market's Compound Annual Growth Rate (CAGR) of 32.68% from 2019-2033 signifies a significant upward trajectory, indicating strong investor confidence and widespread industry acceptance. Key drivers include the need for enhanced customer experience personalization, optimized supply chain management, and improved operational efficiency. The rise of omnichannel retailing, coupled with the increasing availability of sophisticated AI-powered tools like machine learning, natural language processing (NLP), and computer vision, fuels this expansion. Specifically, applications such as personalized recommendations, predictive inventory management, and AI-driven customer relationship management (CRM) are proving transformative. While data privacy concerns and the initial high investment costs pose some challenges, the long-term benefits of increased sales, reduced operational expenses, and enhanced customer loyalty significantly outweigh the risks. The market is segmented by technology (Machine Learning, NLP, Chatbots, etc.), channel (Omnichannel, Brick-and-Mortar, Online), component (Software, Services), deployment (Cloud, On-premise), and application (Supply Chain, Product Optimization, etc.), offering diverse opportunities for growth across various niches. Leading players like Salesforce, IBM, Google, and Amazon are actively shaping the landscape through innovative solutions and strategic partnerships.
The forecast period (2025-2033) promises further market consolidation as companies focus on developing more integrated and sophisticated AI solutions. The North American market currently holds a significant share, but the Asia-Pacific region is poised for substantial growth due to its rapidly expanding e-commerce sector and increasing adoption of AI technologies. The continued development of advanced AI capabilities, such as improved predictive analytics and more nuanced customer interaction capabilities, will further accelerate market expansion. This growth will be fueled by the increasing integration of AI across all aspects of the retail value chain, from supply chain optimization to customer engagement and personalized shopping experiences. Competition will intensify as established players and emerging startups vie for market share, potentially leading to increased innovation and more affordable AI-powered retail solutions.

AI in Retail Market: A Comprehensive Report (2019-2033)
This insightful report provides a deep dive into the dynamic AI in Retail market, offering a comprehensive analysis of its current state and future trajectory. With a study period spanning 2019-2033, a base year of 2025, and a forecast period of 2025-2033, this report is an invaluable resource for stakeholders seeking to understand and capitalize on the transformative potential of AI in the retail sector. The market is projected to reach xx Million by 2033, demonstrating substantial growth from its xx Million valuation in 2025.
AI in Retail Market Market Composition & Trends
This section delves into the competitive landscape of the AI in Retail market, examining market concentration, innovation drivers, regulatory hurdles, substitute technologies, end-user profiles, and mergers and acquisitions (M&A) activities. We analyze market share distribution among key players such as ViSenze Pte Ltd, Symphony AI, Salesforce Inc, IBM Corporation, Google LLC, and others. The report also quantifies M&A deal values over the historical period (2019-2024) revealing a xx Million aggregate value, highlighting strategic consolidation within the sector.
- Market Concentration: The AI in retail market exhibits a moderately concentrated structure, with a few major players holding significant market share. However, the market also features a number of smaller, specialized companies offering niche solutions. This report quantifies the market share held by the top five players.
- Innovation Catalysts: Continuous advancements in machine learning, natural language processing, and computer vision are driving innovation. The rising demand for personalized customer experiences and efficient supply chain management further fuels market growth.
- Regulatory Landscape: Government regulations regarding data privacy and consumer protection are shaping the development and adoption of AI-powered retail solutions. We analyze the impact of GDPR, CCPA, and other relevant regulations.
- Substitute Products: Traditional retail methods pose a certain degree of substitution, but the advantages of AI in enhancing efficiency and customer experience make it a compelling choice for most retailers.
- End-User Profiles: This section profiles the key end-users across various retail segments including omnichannel, brick-and-mortar, and pure-play online retailers. It showcases their varying adoption rates and unique needs.
- M&A Activities: The report details significant M&A activity in the sector, identifying key transactions and their implications for market consolidation and technological advancements.

AI in Retail Market Industry Evolution
This section presents a detailed analysis of the AI in Retail market's growth trajectory, technological advancements, and the evolution of consumer behavior impacting demand. We examine the historical growth (2019-2024) and project future growth rates (2025-2033). Data points include compound annual growth rate (CAGR), adoption rates across different segments and regions, and technological milestones. The analysis highlights the shifting consumer demands for personalization, convenience, and seamless omnichannel experiences, impacting the adoption of AI-driven solutions.
The increasing sophistication of AI algorithms and the falling cost of AI infrastructure are key drivers accelerating adoption. The report further explores the emergence of new technologies such as Generative AI and its impact on the market.
Leading Regions, Countries, or Segments in AI in Retail Market
This section identifies the dominant regions, countries, and market segments within the AI in Retail market, segmented by technology, channel, component, deployment, and application. The analysis focuses on the factors driving the dominance of specific segments, supported by evidence from investment trends, regulatory support, and market penetration rates.
- By Technology: Machine learning is currently leading, due to its wide applicability across various retail functions. However, Natural Language Processing (NLP) and computer vision are also witnessing rapid adoption.
- By Channel: Omnichannel is the leading segment, followed by Pure-play Online Retailers. Brick-and-mortar stores are adopting AI at a slower pace but are gradually catching up.
- By Component: The software segment is currently dominant, with the services segment projected for significant growth.
- By Deployment: The Cloud deployment model is witnessing faster growth due to scalability and cost-effectiveness.
- By Application: Supply Chain and Logistics, Customer Relationship Management (CRM) and Product Optimization applications are exhibiting significant traction.
The United States and China are identified as the leading regions driving market growth, due to factors such as advanced technological capabilities and high investments in AI-based retail solutions. Specific drivers, including government initiatives and private sector investments are detailed.
AI in Retail Market Product Innovations
Recent innovations have focused on enhancing personalization, automating tasks, and improving customer experience. Generative AI-powered chatbots and virtual assistants are gaining traction, providing customers with personalized recommendations and support. Advancements in computer vision enable real-time inventory tracking, automated checkout, and improved loss prevention. These solutions boast unique selling propositions such as increased efficiency, reduced operational costs, and improved customer satisfaction.
Propelling Factors for AI in Retail Market Growth
The AI in retail market is fueled by technological advancements, economic factors, and supportive regulations. Technological breakthroughs in machine learning, natural language processing, and computer vision are driving innovation. The demand for enhanced customer experiences and operational efficiencies in the retail sector is fueling the market. Government incentives and supportive regulatory frameworks are further encouraging the adoption of AI-powered solutions.
Obstacles in the AI in Retail Market Market
Despite significant potential, challenges such as data security concerns, high implementation costs, and the need for skilled professionals can hinder market growth. Regulatory compliance and the risk of algorithmic bias are also significant considerations. Supply chain disruptions, increasing competition, and the ethical implications of AI-driven decision-making pose additional obstacles. The report quantifies the impact of these challenges through market analysis.
Future Opportunities in AI in Retail Market
Emerging opportunities include the expansion into new markets, particularly in developing economies with high growth potential, the adoption of emerging technologies such as extended reality (XR) integrated with AI, and increasing focus on sustainability and ethical AI practices. The evolving consumer trends towards personalized experiences and seamless omnichannel shopping will continue to fuel demand.
Major Players in the AI in Retail Market Ecosystem
- ViSenze Pte Ltd
- Symphony AI
- Salesforce Inc
- IBM Corporation
- Google LLC
- Daisy Intelligence Corporation
- Microsoft Corporation
- Amazon Web Services Inc
- BloomReach Inc
- Oracle Corporation
- SAP SE
- Conversica Inc
Key Developments in AI in Retail Market Industry
- November 2023: Amazon Web Services Inc. launched Amazon Q, a generative AI-powered assistant designed to improve workplace efficiency and innovation.
- January 2024: Google Cloud introduced new generative AI tools for retailers, including a chatbot for improved customer experience and a new LLM to enhance website search functionality. These developments signify a major shift towards utilizing generative AI in enhancing customer engagement and optimizing retail operations.
Strategic AI in Retail Market Market Forecast
The AI in Retail market is poised for significant growth, driven by continued technological advancements, increasing adoption across various retail segments, and supportive regulatory environments. The forecast period anticipates robust expansion, with specific growth rates detailed in the report, driven by the increasing demand for personalized customer experiences, efficient supply chain management, and data-driven decision-making. New market opportunities, emerging technologies, and evolving consumer trends will further fuel this market expansion.
AI in Retail Market Segmentation
-
1. Channel
- 1.1. Omnichannel
- 1.2. Brick and Mortar
- 1.3. Pure-play Online Retailers
-
2. Component
- 2.1. Software
- 2.2. Service (Managed and Professional)
-
3. Deployment
- 3.1. Cloud
- 3.2. On-premise
-
4. Application
- 4.1. Supply Chain and Logistics
- 4.2. Product Optimization
- 4.3. In-Store Navigation
- 4.4. Payment and Pricing Analytics
- 4.5. Inventory Management
- 4.6. Customer Relationship Management (CRM)
-
5. Technology
- 5.1. Machine Learning
- 5.2. Natural Language Processing
- 5.3. Chatbots
- 5.4. Image and Video Analytics
- 5.5. Swarm Intelligence
AI in Retail Market Segmentation By Geography
- 1. North America
- 2. Europe
- 3. Asia
- 4. Australia and New Zealand
- 5. Latin America
- 6. Middle East and Africa

AI in Retail Market REPORT HIGHLIGHTS
Aspects | Details |
---|---|
Study Period | 2019-2033 |
Base Year | 2024 |
Estimated Year | 2025 |
Forecast Period | 2025-2033 |
Historical Period | 2019-2024 |
Growth Rate | CAGR of 32.68% from 2019-2033 |
Segmentation |
|
Table of Contents
- 1. Introduction
- 1.1. Research Scope
- 1.2. Market Segmentation
- 1.3. Research Methodology
- 1.4. Definitions and Assumptions
- 2. Executive Summary
- 2.1. Introduction
- 3. Market Dynamics
- 3.1. Introduction
- 3.2. Market Drivers
- 3.2.1. Rapid Adoption of Advances in Technology Across Retail Chain; Emerging Trend of Startups in the Retail Space
- 3.3. Market Restrains
- 3.3.1. Lack of Professionals as well as In-house Knowledge for Cultural Readiness
- 3.4. Market Trends
- 3.4.1. Software Segment to Witness Major Growth
- 4. Market Factor Analysis
- 4.1. Porters Five Forces
- 4.2. Supply/Value Chain
- 4.3. PESTEL analysis
- 4.4. Market Entropy
- 4.5. Patent/Trademark Analysis
- 5. AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 5.1. Market Analysis, Insights and Forecast - by Channel
- 5.1.1. Omnichannel
- 5.1.2. Brick and Mortar
- 5.1.3. Pure-play Online Retailers
- 5.2. Market Analysis, Insights and Forecast - by Component
- 5.2.1. Software
- 5.2.2. Service (Managed and Professional)
- 5.3. Market Analysis, Insights and Forecast - by Deployment
- 5.3.1. Cloud
- 5.3.2. On-premise
- 5.4. Market Analysis, Insights and Forecast - by Application
- 5.4.1. Supply Chain and Logistics
- 5.4.2. Product Optimization
- 5.4.3. In-Store Navigation
- 5.4.4. Payment and Pricing Analytics
- 5.4.5. Inventory Management
- 5.4.6. Customer Relationship Management (CRM)
- 5.5. Market Analysis, Insights and Forecast - by Technology
- 5.5.1. Machine Learning
- 5.5.2. Natural Language Processing
- 5.5.3. Chatbots
- 5.5.4. Image and Video Analytics
- 5.5.5. Swarm Intelligence
- 5.6. Market Analysis, Insights and Forecast - by Region
- 5.6.1. North America
- 5.6.2. Europe
- 5.6.3. Asia
- 5.6.4. Australia and New Zealand
- 5.6.5. Latin America
- 5.6.6. Middle East and Africa
- 5.1. Market Analysis, Insights and Forecast - by Channel
- 6. North America AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 6.1. Market Analysis, Insights and Forecast - by Channel
- 6.1.1. Omnichannel
- 6.1.2. Brick and Mortar
- 6.1.3. Pure-play Online Retailers
- 6.2. Market Analysis, Insights and Forecast - by Component
- 6.2.1. Software
- 6.2.2. Service (Managed and Professional)
- 6.3. Market Analysis, Insights and Forecast - by Deployment
- 6.3.1. Cloud
- 6.3.2. On-premise
- 6.4. Market Analysis, Insights and Forecast - by Application
- 6.4.1. Supply Chain and Logistics
- 6.4.2. Product Optimization
- 6.4.3. In-Store Navigation
- 6.4.4. Payment and Pricing Analytics
- 6.4.5. Inventory Management
- 6.4.6. Customer Relationship Management (CRM)
- 6.5. Market Analysis, Insights and Forecast - by Technology
- 6.5.1. Machine Learning
- 6.5.2. Natural Language Processing
- 6.5.3. Chatbots
- 6.5.4. Image and Video Analytics
- 6.5.5. Swarm Intelligence
- 6.1. Market Analysis, Insights and Forecast - by Channel
- 7. Europe AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 7.1. Market Analysis, Insights and Forecast - by Channel
- 7.1.1. Omnichannel
- 7.1.2. Brick and Mortar
- 7.1.3. Pure-play Online Retailers
- 7.2. Market Analysis, Insights and Forecast - by Component
- 7.2.1. Software
- 7.2.2. Service (Managed and Professional)
- 7.3. Market Analysis, Insights and Forecast - by Deployment
- 7.3.1. Cloud
- 7.3.2. On-premise
- 7.4. Market Analysis, Insights and Forecast - by Application
- 7.4.1. Supply Chain and Logistics
- 7.4.2. Product Optimization
- 7.4.3. In-Store Navigation
- 7.4.4. Payment and Pricing Analytics
- 7.4.5. Inventory Management
- 7.4.6. Customer Relationship Management (CRM)
- 7.5. Market Analysis, Insights and Forecast - by Technology
- 7.5.1. Machine Learning
- 7.5.2. Natural Language Processing
- 7.5.3. Chatbots
- 7.5.4. Image and Video Analytics
- 7.5.5. Swarm Intelligence
- 7.1. Market Analysis, Insights and Forecast - by Channel
- 8. Asia AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 8.1. Market Analysis, Insights and Forecast - by Channel
- 8.1.1. Omnichannel
- 8.1.2. Brick and Mortar
- 8.1.3. Pure-play Online Retailers
- 8.2. Market Analysis, Insights and Forecast - by Component
- 8.2.1. Software
- 8.2.2. Service (Managed and Professional)
- 8.3. Market Analysis, Insights and Forecast - by Deployment
- 8.3.1. Cloud
- 8.3.2. On-premise
- 8.4. Market Analysis, Insights and Forecast - by Application
- 8.4.1. Supply Chain and Logistics
- 8.4.2. Product Optimization
- 8.4.3. In-Store Navigation
- 8.4.4. Payment and Pricing Analytics
- 8.4.5. Inventory Management
- 8.4.6. Customer Relationship Management (CRM)
- 8.5. Market Analysis, Insights and Forecast - by Technology
- 8.5.1. Machine Learning
- 8.5.2. Natural Language Processing
- 8.5.3. Chatbots
- 8.5.4. Image and Video Analytics
- 8.5.5. Swarm Intelligence
- 8.1. Market Analysis, Insights and Forecast - by Channel
- 9. Australia and New Zealand AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 9.1. Market Analysis, Insights and Forecast - by Channel
- 9.1.1. Omnichannel
- 9.1.2. Brick and Mortar
- 9.1.3. Pure-play Online Retailers
- 9.2. Market Analysis, Insights and Forecast - by Component
- 9.2.1. Software
- 9.2.2. Service (Managed and Professional)
- 9.3. Market Analysis, Insights and Forecast - by Deployment
- 9.3.1. Cloud
- 9.3.2. On-premise
- 9.4. Market Analysis, Insights and Forecast - by Application
- 9.4.1. Supply Chain and Logistics
- 9.4.2. Product Optimization
- 9.4.3. In-Store Navigation
- 9.4.4. Payment and Pricing Analytics
- 9.4.5. Inventory Management
- 9.4.6. Customer Relationship Management (CRM)
- 9.5. Market Analysis, Insights and Forecast - by Technology
- 9.5.1. Machine Learning
- 9.5.2. Natural Language Processing
- 9.5.3. Chatbots
- 9.5.4. Image and Video Analytics
- 9.5.5. Swarm Intelligence
- 9.1. Market Analysis, Insights and Forecast - by Channel
- 10. Latin America AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 10.1. Market Analysis, Insights and Forecast - by Channel
- 10.1.1. Omnichannel
- 10.1.2. Brick and Mortar
- 10.1.3. Pure-play Online Retailers
- 10.2. Market Analysis, Insights and Forecast - by Component
- 10.2.1. Software
- 10.2.2. Service (Managed and Professional)
- 10.3. Market Analysis, Insights and Forecast - by Deployment
- 10.3.1. Cloud
- 10.3.2. On-premise
- 10.4. Market Analysis, Insights and Forecast - by Application
- 10.4.1. Supply Chain and Logistics
- 10.4.2. Product Optimization
- 10.4.3. In-Store Navigation
- 10.4.4. Payment and Pricing Analytics
- 10.4.5. Inventory Management
- 10.4.6. Customer Relationship Management (CRM)
- 10.5. Market Analysis, Insights and Forecast - by Technology
- 10.5.1. Machine Learning
- 10.5.2. Natural Language Processing
- 10.5.3. Chatbots
- 10.5.4. Image and Video Analytics
- 10.5.5. Swarm Intelligence
- 10.1. Market Analysis, Insights and Forecast - by Channel
- 11. Middle East and Africa AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 11.1. Market Analysis, Insights and Forecast - by Channel
- 11.1.1. Omnichannel
- 11.1.2. Brick and Mortar
- 11.1.3. Pure-play Online Retailers
- 11.2. Market Analysis, Insights and Forecast - by Component
- 11.2.1. Software
- 11.2.2. Service (Managed and Professional)
- 11.3. Market Analysis, Insights and Forecast - by Deployment
- 11.3.1. Cloud
- 11.3.2. On-premise
- 11.4. Market Analysis, Insights and Forecast - by Application
- 11.4.1. Supply Chain and Logistics
- 11.4.2. Product Optimization
- 11.4.3. In-Store Navigation
- 11.4.4. Payment and Pricing Analytics
- 11.4.5. Inventory Management
- 11.4.6. Customer Relationship Management (CRM)
- 11.5. Market Analysis, Insights and Forecast - by Technology
- 11.5.1. Machine Learning
- 11.5.2. Natural Language Processing
- 11.5.3. Chatbots
- 11.5.4. Image and Video Analytics
- 11.5.5. Swarm Intelligence
- 11.1. Market Analysis, Insights and Forecast - by Channel
- 12. North America AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 12.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 12.1.1.
- 13. Europe AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 13.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 13.1.1.
- 14. Asia AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 14.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 14.1.1.
- 15. Australia and New Zealand AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 15.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 15.1.1.
- 16. Latin America AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 16.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 16.1.1.
- 17. Middle East and Africa AI in Retail Market Analysis, Insights and Forecast, 2019-2031
- 17.1. Market Analysis, Insights and Forecast - By Country/Sub-region
- 17.1.1.
- 18. Competitive Analysis
- 18.1. Market Share Analysis 2024
- 18.2. Company Profiles
- 18.2.1 ViSenze Pte Ltd
- 18.2.1.1. Overview
- 18.2.1.2. Products
- 18.2.1.3. SWOT Analysis
- 18.2.1.4. Recent Developments
- 18.2.1.5. Financials (Based on Availability)
- 18.2.2 Symphony AI
- 18.2.2.1. Overview
- 18.2.2.2. Products
- 18.2.2.3. SWOT Analysis
- 18.2.2.4. Recent Developments
- 18.2.2.5. Financials (Based on Availability)
- 18.2.3 Salesforce Inc
- 18.2.3.1. Overview
- 18.2.3.2. Products
- 18.2.3.3. SWOT Analysis
- 18.2.3.4. Recent Developments
- 18.2.3.5. Financials (Based on Availability)
- 18.2.4 IBM Corporation
- 18.2.4.1. Overview
- 18.2.4.2. Products
- 18.2.4.3. SWOT Analysis
- 18.2.4.4. Recent Developments
- 18.2.4.5. Financials (Based on Availability)
- 18.2.5 Google LLC
- 18.2.5.1. Overview
- 18.2.5.2. Products
- 18.2.5.3. SWOT Analysis
- 18.2.5.4. Recent Developments
- 18.2.5.5. Financials (Based on Availability)
- 18.2.6 Daisy Intelligence Corporation
- 18.2.6.1. Overview
- 18.2.6.2. Products
- 18.2.6.3. SWOT Analysis
- 18.2.6.4. Recent Developments
- 18.2.6.5. Financials (Based on Availability)
- 18.2.7 Microsoft Corporation
- 18.2.7.1. Overview
- 18.2.7.2. Products
- 18.2.7.3. SWOT Analysis
- 18.2.7.4. Recent Developments
- 18.2.7.5. Financials (Based on Availability)
- 18.2.8 Amazon Web Services Inc
- 18.2.8.1. Overview
- 18.2.8.2. Products
- 18.2.8.3. SWOT Analysis
- 18.2.8.4. Recent Developments
- 18.2.8.5. Financials (Based on Availability)
- 18.2.9 BloomReach Inc
- 18.2.9.1. Overview
- 18.2.9.2. Products
- 18.2.9.3. SWOT Analysis
- 18.2.9.4. Recent Developments
- 18.2.9.5. Financials (Based on Availability)
- 18.2.10 Oracle Corporation
- 18.2.10.1. Overview
- 18.2.10.2. Products
- 18.2.10.3. SWOT Analysis
- 18.2.10.4. Recent Developments
- 18.2.10.5. Financials (Based on Availability)
- 18.2.11 SAP SE
- 18.2.11.1. Overview
- 18.2.11.2. Products
- 18.2.11.3. SWOT Analysis
- 18.2.11.4. Recent Developments
- 18.2.11.5. Financials (Based on Availability)
- 18.2.12 Conversica Inc *List Not Exhaustive
- 18.2.12.1. Overview
- 18.2.12.2. Products
- 18.2.12.3. SWOT Analysis
- 18.2.12.4. Recent Developments
- 18.2.12.5. Financials (Based on Availability)
- 18.2.1 ViSenze Pte Ltd
List of Figures
- Figure 1: AI in Retail Market Revenue Breakdown (Million, %) by Product 2024 & 2032
- Figure 2: AI in Retail Market Share (%) by Company 2024
List of Tables
- Table 1: AI in Retail Market Revenue Million Forecast, by Region 2019 & 2032
- Table 2: AI in Retail Market Revenue Million Forecast, by Channel 2019 & 2032
- Table 3: AI in Retail Market Revenue Million Forecast, by Component 2019 & 2032
- Table 4: AI in Retail Market Revenue Million Forecast, by Deployment 2019 & 2032
- Table 5: AI in Retail Market Revenue Million Forecast, by Application 2019 & 2032
- Table 6: AI in Retail Market Revenue Million Forecast, by Technology 2019 & 2032
- Table 7: AI in Retail Market Revenue Million Forecast, by Region 2019 & 2032
- Table 8: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 9: AI in Retail Market Revenue (Million) Forecast, by Application 2019 & 2032
- Table 10: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 11: AI in Retail Market Revenue (Million) Forecast, by Application 2019 & 2032
- Table 12: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 13: AI in Retail Market Revenue (Million) Forecast, by Application 2019 & 2032
- Table 14: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 15: AI in Retail Market Revenue (Million) Forecast, by Application 2019 & 2032
- Table 16: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 17: AI in Retail Market Revenue (Million) Forecast, by Application 2019 & 2032
- Table 18: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 19: AI in Retail Market Revenue (Million) Forecast, by Application 2019 & 2032
- Table 20: AI in Retail Market Revenue Million Forecast, by Channel 2019 & 2032
- Table 21: AI in Retail Market Revenue Million Forecast, by Component 2019 & 2032
- Table 22: AI in Retail Market Revenue Million Forecast, by Deployment 2019 & 2032
- Table 23: AI in Retail Market Revenue Million Forecast, by Application 2019 & 2032
- Table 24: AI in Retail Market Revenue Million Forecast, by Technology 2019 & 2032
- Table 25: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 26: AI in Retail Market Revenue Million Forecast, by Channel 2019 & 2032
- Table 27: AI in Retail Market Revenue Million Forecast, by Component 2019 & 2032
- Table 28: AI in Retail Market Revenue Million Forecast, by Deployment 2019 & 2032
- Table 29: AI in Retail Market Revenue Million Forecast, by Application 2019 & 2032
- Table 30: AI in Retail Market Revenue Million Forecast, by Technology 2019 & 2032
- Table 31: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 32: AI in Retail Market Revenue Million Forecast, by Channel 2019 & 2032
- Table 33: AI in Retail Market Revenue Million Forecast, by Component 2019 & 2032
- Table 34: AI in Retail Market Revenue Million Forecast, by Deployment 2019 & 2032
- Table 35: AI in Retail Market Revenue Million Forecast, by Application 2019 & 2032
- Table 36: AI in Retail Market Revenue Million Forecast, by Technology 2019 & 2032
- Table 37: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 38: AI in Retail Market Revenue Million Forecast, by Channel 2019 & 2032
- Table 39: AI in Retail Market Revenue Million Forecast, by Component 2019 & 2032
- Table 40: AI in Retail Market Revenue Million Forecast, by Deployment 2019 & 2032
- Table 41: AI in Retail Market Revenue Million Forecast, by Application 2019 & 2032
- Table 42: AI in Retail Market Revenue Million Forecast, by Technology 2019 & 2032
- Table 43: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 44: AI in Retail Market Revenue Million Forecast, by Channel 2019 & 2032
- Table 45: AI in Retail Market Revenue Million Forecast, by Component 2019 & 2032
- Table 46: AI in Retail Market Revenue Million Forecast, by Deployment 2019 & 2032
- Table 47: AI in Retail Market Revenue Million Forecast, by Application 2019 & 2032
- Table 48: AI in Retail Market Revenue Million Forecast, by Technology 2019 & 2032
- Table 49: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
- Table 50: AI in Retail Market Revenue Million Forecast, by Channel 2019 & 2032
- Table 51: AI in Retail Market Revenue Million Forecast, by Component 2019 & 2032
- Table 52: AI in Retail Market Revenue Million Forecast, by Deployment 2019 & 2032
- Table 53: AI in Retail Market Revenue Million Forecast, by Application 2019 & 2032
- Table 54: AI in Retail Market Revenue Million Forecast, by Technology 2019 & 2032
- Table 55: AI in Retail Market Revenue Million Forecast, by Country 2019 & 2032
Frequently Asked Questions
1. What is the projected Compound Annual Growth Rate (CAGR) of the AI in Retail Market?
The projected CAGR is approximately 32.68%.
2. Which companies are prominent players in the AI in Retail Market?
Key companies in the market include ViSenze Pte Ltd, Symphony AI, Salesforce Inc, IBM Corporation, Google LLC, Daisy Intelligence Corporation, Microsoft Corporation, Amazon Web Services Inc, BloomReach Inc, Oracle Corporation, SAP SE, Conversica Inc *List Not Exhaustive.
3. What are the main segments of the AI in Retail Market?
The market segments include Channel, Component, Deployment, Application, Technology.
4. Can you provide details about the market size?
The market size is estimated to be USD 9.85 Million as of 2022.
5. What are some drivers contributing to market growth?
Rapid Adoption of Advances in Technology Across Retail Chain; Emerging Trend of Startups in the Retail Space.
6. What are the notable trends driving market growth?
Software Segment to Witness Major Growth.
7. Are there any restraints impacting market growth?
Lack of Professionals as well as In-house Knowledge for Cultural Readiness.
8. Can you provide examples of recent developments in the market?
January 2024: Through Google's cloud business, it introduced new tools to use generative AI in retail. The tools that retailers will use Google Cloud to improve customer experience on the Internet are based on emerging technology. One of the tools is a generative AI-powered chatbot that can be embedded in retail websites and apps. Google introduced a new large language model, LLM, that it says improves the ability to search for retailers' websites.
9. What pricing options are available for accessing the report?
Pricing options include single-user, multi-user, and enterprise licenses priced at USD 3800, USD 4500, and USD 5800 respectively.
10. Is the market size provided in terms of value or volume?
The market size is provided in terms of value, measured in Million.
11. Are there any specific market keywords associated with the report?
Yes, the market keyword associated with the report is "AI in Retail Market," which aids in identifying and referencing the specific market segment covered.
12. How do I determine which pricing option suits my needs best?
The pricing options vary based on user requirements and access needs. Individual users may opt for single-user licenses, while businesses requiring broader access may choose multi-user or enterprise licenses for cost-effective access to the report.
13. Are there any additional resources or data provided in the AI in Retail Market report?
While the report offers comprehensive insights, it's advisable to review the specific contents or supplementary materials provided to ascertain if additional resources or data are available.
14. How can I stay updated on further developments or reports in the AI in Retail Market?
To stay informed about further developments, trends, and reports in the AI in Retail Market, consider subscribing to industry newsletters, following relevant companies and organizations, or regularly checking reputable industry news sources and publications.
Methodology
Step 1 - Identification of Relevant Samples Size from Population Database



Step 2 - Approaches for Defining Global Market Size (Value, Volume* & Price*)

Note*: In applicable scenarios
Step 3 - Data Sources
Primary Research
- Web Analytics
- Survey Reports
- Research Institute
- Latest Research Reports
- Opinion Leaders
Secondary Research
- Annual Reports
- White Paper
- Latest Press Release
- Industry Association
- Paid Database
- Investor Presentations

Step 4 - Data Triangulation
Involves using different sources of information in order to increase the validity of a study
These sources are likely to be stakeholders in a program - participants, other researchers, program staff, other community members, and so on.
Then we put all data in single framework & apply various statistical tools to find out the dynamic on the market.
During the analysis stage, feedback from the stakeholder groups would be compared to determine areas of agreement as well as areas of divergence